首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6765篇
  免费   1139篇
  国内免费   713篇
化学   4523篇
晶体学   70篇
力学   405篇
综合类   41篇
数学   640篇
物理学   2938篇
  2023年   146篇
  2022年   113篇
  2021年   152篇
  2020年   258篇
  2019年   217篇
  2018年   204篇
  2017年   185篇
  2016年   288篇
  2015年   285篇
  2014年   354篇
  2013年   496篇
  2012年   535篇
  2011年   590篇
  2010年   397篇
  2009年   403篇
  2008年   426篇
  2007年   365篇
  2006年   357篇
  2005年   330篇
  2004年   273篇
  2003年   201篇
  2002年   213篇
  2001年   168篇
  2000年   167篇
  1999年   172篇
  1998年   123篇
  1997年   124篇
  1996年   150篇
  1995年   107篇
  1994年   113篇
  1993年   108篇
  1992年   99篇
  1991年   82篇
  1990年   62篇
  1989年   74篇
  1988年   52篇
  1987年   46篇
  1986年   38篇
  1985年   34篇
  1984年   19篇
  1983年   18篇
  1982年   14篇
  1981年   13篇
  1980年   9篇
  1979年   6篇
  1976年   4篇
  1974年   3篇
  1973年   3篇
  1970年   3篇
  1957年   3篇
排序方式: 共有8617条查询结果,搜索用时 31 毫秒
61.
Lattice tuning at the ≈1 nm scale is fascinating and challenging; for instance, lattice compression at such a minuscule scale has not been observed. The lattice compression might also bring about some unusual properties, which waits to be verified. Through ligand induction, we herein achieve the lattice compression in a ≈1 nm gold nanocluster for the first time, as detected by the single-crystal X-ray crystallography. In a freshly synthesized Au52(CHT)28 (CHT=S-c−C6H11) nanocluster, the lattice distance of the (110) facet is found to be compressed from 4.51 to 3.58 Å at the near end. However, the lattice distances of the (111) and (100) facets show no change in different positions. The lattice-compressed nanocluster exhibits superior electrocatalytic activity for the CO2 reduction reaction (CO2RR) compared to that exhibited by the same-sized Au52(TBBT)32 (TBBT=4-tert-butyl-benzenethiolate) nanocluster and larger Au nanocrystals without lattice variation, indicating that lattice tuning is an efficient method for tailoring the properties of metal nanoclusters. Further theoretical calculations explain the high CO2RR performance of the lattice-compressed Au52(CHT)28 and provide a correlation between its structure and catalytic activity.  相似文献   
62.
Developing highly efficient catalytic sites for O2 reduction to H2O2, while ensuring the fast injection of energetic electrons into these sites, is crucial for artificial H2O2 photosynthesis but remains challenging. Herein, we report a strongly coupled hybrid photocatalyst comprising polymeric carbon nitride (CN) and a two-dimensional conductive Zn-containing metal–organic framework (Zn-MOF) (denoted as CN/Zn-MOF(lc)/400; lc, low crystallinity; 400, annealing temperature in °C), in which the catalytic capability of Zn-MOF(lc) for H2O2 production is unlocked by the annealing-induced effects. As revealed by experimental and theoretical calculation results, the Zn sites coordinated to four O (Zn-O4) in Zn-MOF(lc) are thermally activated to a relatively electron-rich state due to the annealing-induced local structure shrinkage, which favors the formation of a key *OOH intermediate of 2e O2 reduction on these sites. Moreover, the annealing treatment facilitates the photoelectron migration from the CN photocatalyst to the Zn-MOF(lc) catalytic unit. As a result, the optimized catalyst exhibits dramatically enhanced H2O2 production activity and excellent stability under visible light irradiation.  相似文献   
63.
Enantioselective synthesis of N−N biaryl atropisomers is an emerging area but remains underexplored. The development of efficient synthesis of N−N biaryl atropisomers is in great demand. Herein, the construction of N−N biaryl atropisomers through iridium-catalyzed asymmetric C−H alkylation is reported for the first time. In the presence of readily available Ir precursor and Xyl-BINAP, a variety of axially chiral molecules based on indole-pyrrole skeleton were obtained in good yields (up to 98 %) with excellent enantioselectivity (up to 99 % ee). In addition, N−N bispyrrole atropisomers could also be synthesized in excellent yields and enantioselectivity. This method features perfect atom economy, wide substrate scope, and multifunctionalized products allowing diverse transformations.  相似文献   
64.
Dual-atom catalysts (DAC) are deemed as promising electrocatalysts due to the abundant active sites and adjustable electronic structure, but the fabrication of well-defined DAC is still full of challenges. Herein, bonded Fe dual-atom catalysts (Fe2DAC) with Fe2N6C8O2 configuration were developed through one-step carbonization of a preorganized covalent organic framework with bimetallic Fe chelation sites (Fe2COF). The transition from Fe2COF to Fe2DAC involved the dissociation of the nanoparticles and the capture of atoms by carbon defects. Benefitting from the optimized d-band center and enhanced adsorption of OOH* intermediates, Fe2DAC exhibited outstanding oxygen reduction activity with a half-wave potential of 0.898 V vs. RHE. This work will guide more fabrication of dual-atom and even cluster catalysts from preorganized COF in the future.  相似文献   
65.
Enzymatic catalysis with high efficiency allows them a great prospect in metabolite monitoring in living cells. However, complex tumor microenvironments, such as acidity, H2O2, and hypoxia, are bound to disturb catalytic reactions for misleading results. Here, we report a spatially compartmentalized artificial organelle to correct intratumoral glucose analysis, where the zeolitic imidazolate framework-8 immobilized glucose oxidase-horseradish peroxidase cascade core and catalase-directed shell act as signal transduction and guarding rooms respectively. The acid-digested core and stable shell provide appropriate spaces to boost biocatalytic efficiency with good tolerability. Notably, the endogenous H2O2 is in situ decomposed to O2 by catalase, which not only overcomes the interference in signal output but also alleviates the hypoxic states to maximize glucose oxidation. The marked protective effect and biocompatibility render artificial organelles to correct the signal transduction for dynamic monitoring glucose in vitro and in vivo, achieving our goal of accurate intratumoral metabolite analysis.  相似文献   
66.
As exciting candidates for next-generation energy storage, all-solid-state lithium batteries (ASSLBs) are highly dependent on advanced solid-state electrolytes (SSEs). Here, using cost-effective LaCl3 and CeCl3 lattice (UCl3-type structure) as the host and further combined with a multiple-cation mixed strategy, we report a series of UCl3-type SSEs with high room-temperature ionic conductivities over 10−3 S cm−1 and good compatibility with high-voltage oxide cathodes. The intrinsic large-size hexagonal one-dimensional channels and highly disordered amorphous phase induced by multi-metal cation species are believed to trigger fast multiple ionic conductions of Li+, Na+, K+, Cu+, and Ag+. The UCl3-type SSEs enable a stable prototype ASSLB capable of over 3000 cycles and high reversibility at −30 °C. Further exploration of the brand-new multiple-cation mixed chlorides is likely to lead to the development of advanced halide SSEs suitable for ASSLBs with high energy density.  相似文献   
67.
Hydrogen spillover, involving the surface migration of dissociated hydrogen atoms from active metal sites to the relatively inert catalyst support, plays a crucial role in hydrogen-involved catalytic processes. However, a comprehensive understanding of how H atoms are driven to spill over from active sites onto the catalyst support is still lacking. Here, we examine the atomic-scale perspective of the H spillover process on a Pt/Cu(111) single atom alloy surface using machine-learning accelerated molecular dynamics calculations based on density functional theory. Our results show that when an impinging H2 dissociates at an active Pt site, the Pt atom undergoes deactivation due to the dissociated hydrogen atoms that attach to it. Interestingly, collisions between H2 and sticking H atoms facilitate H spillover onto the host Cu, leading to the reactivation of the Pt atom and the realization of a continuous H spillover process. This work underscores the importance of the interaction between gas molecules and adsorbates as a driving force in elucidating chemical processes under a gaseous atmosphere, which has so far been underappreciated in thermodynamic studies.  相似文献   
68.
The perovskite solar cells (PSCs) with high efficiency and stability are in great demand for commercial applications. Although the remarkable photovoltaic feature of perovskite layer plays a great role in improving the PCE of PSCs, the inevitable defects and poor stability of perovskite, etc. are the bottleneck and restrict the commercialization of PSCs. Herein, a review provides a strategy of applying aggregation-induced emission (AIE) molecules, containing passivation functional groups and distinct AIE character, which serves as the alternative materials for fabricating high-efficiency and high-stability PSCs. The methods of introducing AIE molecules to PSCs are also summarized, including additive engineering, interfacial engineering, hole transport materials and so on. In addition, the functions of AIE molecule are discussed, such as defects passivation, morphology modulation, well-matched energy level, enhanced stability, hole transport ability, carrier recombination suppression. Finally, the detailed functions of AIE molecules are offered and further research trend for high performance PSCs based on AIE materials is proposed.  相似文献   
69.
Robinia pseudoacacia flowers have attracted much attention because of numerous bioactivities. In this study, its extract showed the potential scavenging ability for 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) and 1,1-diphenyl-2-picrylhydrazyl free radicals. Under the guidance of antioxidant activity, the antioxidant extract was enriched by liquid-liquid extraction. The partition coefficients of the two main components in antioxidant extracts differed greatly, so in this study, elution-extrusion counter-current chromatography with the solvent system of n-hexane-ethyl acetate-methanol-water (2.5:5:2.5:5, v/v) was used to enhance the separation efficiency, and the two main components were successfully obtained. Among them, kaempferol showed strong antioxidant activity, which can be responsible for the activity of the extract. In order to deeply understand the antioxidant mechanism of kaempferol, the thermodynamics, frontier molecular orbital, and kinetics of scavenging free radicals were investigated by density functional theory. The results showed that 4′-OH in kaempferol was the most active group, which can scavenge free radicals by hydrogen atom transfer in non-polar solvents and activate 3-OH to generate double hydrogen atom transfer in the gas phase. But in polar solvents, it was more inclined to clear radicals through single electron transfer and proton transfer. The kinetic result showed that kaempferol needed 9.17 kcal/mol of activation energy to scavenge free radicals.  相似文献   
70.
以甲醇提取样品,采用超高效液相色谱串联质谱法(UPLC–MS/MS)测定水果中复硝酚钠的残留量。以甲醇–10 mmol/L乙酸铵水溶液(体积比为60∶40)为流动相,质谱采用电喷雾负离子MRM检测模式。对硝基苯酚钠和5-硝基愈创木酚钠的线性范围为0.05~2.00 mg/L,检出限为0.01 mg/kg,邻硝基苯酚钠的线性范围为2.5~100.0 mg/L,检出限为0.5 mg/kg,线性相关系数均大于0.995。实际样品中对硝基苯酚钠、邻硝基苯酚钠和5-硝基愈创木酚钠的加标回收率分别为83.0%~93.4%,81.0%~87.4%,83.0%~91.8%,测定结果的相对标准偏差小于7%(n=6)。该法操作简单、快捷,精密度、准确度高,适用于水果中复硝酚钠的残留分析。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号